

(CHAPTER 3)

Fluid Statics

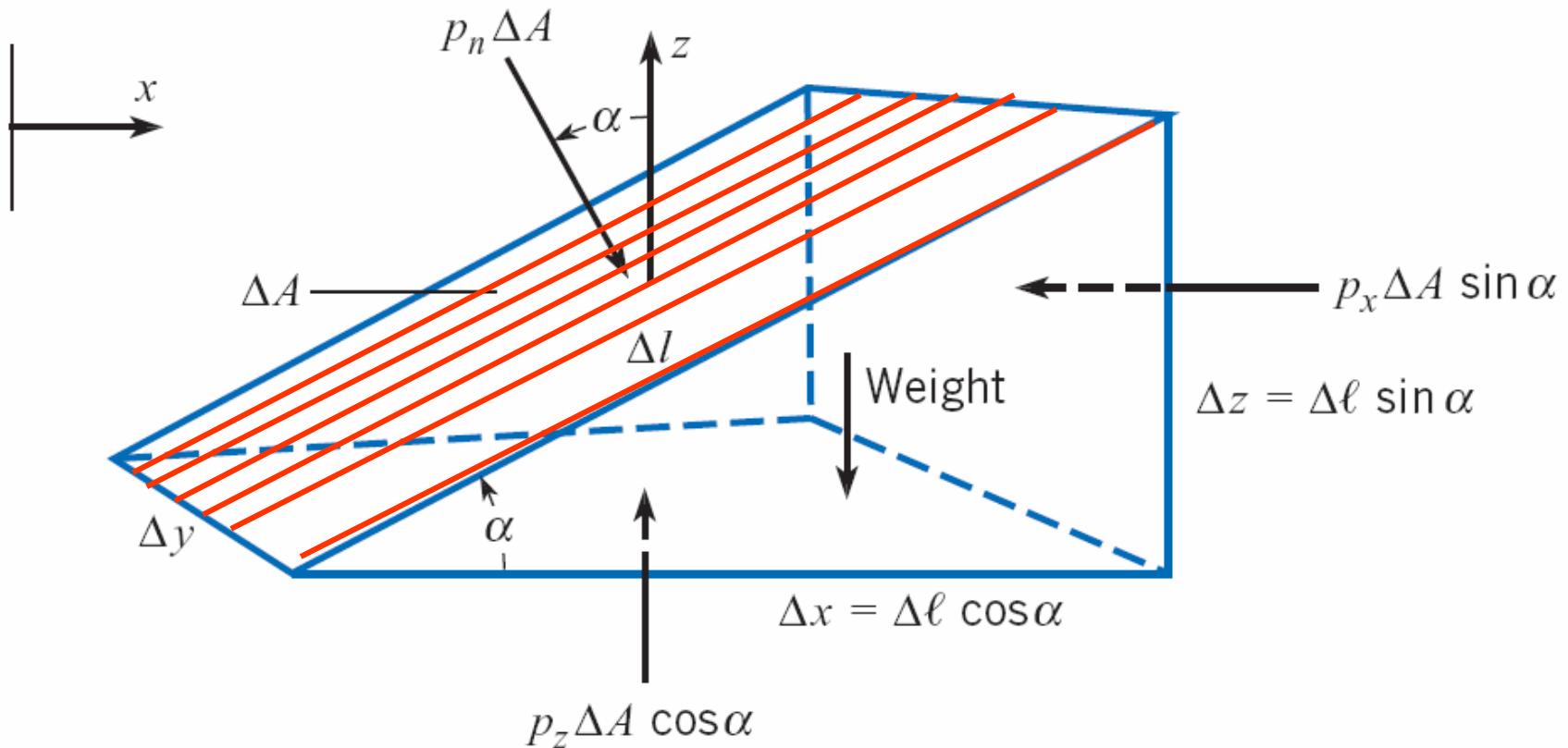
1. PRESSURE

For a static Fluid, hydrostatic pressure by definition

$$P = \frac{F}{A}$$

To prove this, consider a wedge-shaped element of fluid in equilibrium as shown in Fig. 1

Fluid Statics



Consider the forces in the X-direction, we obtain

Fluid Statics

Consider the forces in the X-direction, we obtain

$$(p_n \Delta y \Delta l) \sin \alpha - p_x (\Delta y \Delta l \sin \alpha) = 0$$

Consider the forces in the Z-direction, we obtain

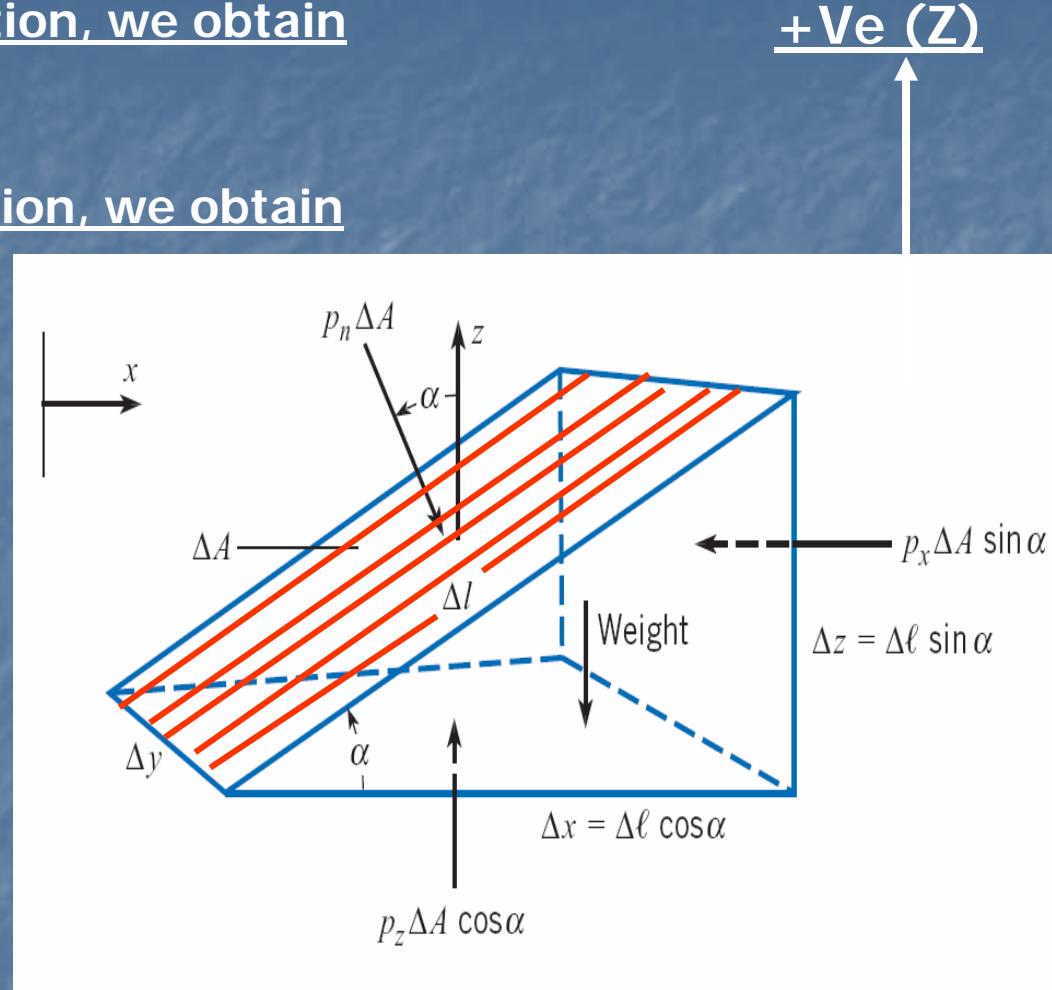
$$-(p_n \Delta y \Delta l) \cos \alpha + p_z (\Delta y \Delta l \cos \alpha) - mg = 0$$

$$-(p_n \Delta y \Delta l) \cos \alpha + p_z (\Delta y \Delta l \cos \alpha) - \rho V g = 0$$

Note: Volume of a triangle (V)

$$= \text{Area} \times \text{height} = \frac{1}{2} (\Delta y \Delta l \cos \alpha) \Delta z$$

$$\frac{1}{2} (\Delta y \Delta l \cos \alpha) (\Delta l \sin \alpha)$$



$$-(p_n \Delta y \Delta l) \cos \alpha + p_z (\Delta y \Delta l \cos \alpha) - \rho g \left(\frac{1}{2} (\Delta y \Delta l \cos \alpha) (\Delta l \sin \alpha) \right) = 0$$

Fluid Statics

Dividing by the term $(\Delta y \Delta l \cos \alpha)$ and let $(\Delta l \rightarrow 0)$

$$p_n = p_z = 0 \quad \text{and} \quad p_n = p_x = p_z = 0$$

Since angle (α) is arbitrary and pressure (p_n) is independent of (α) , then it can be concluded that the pressure at a point in a static fluid acts with the same magnitude in all directions.

$$p_n = p_x = p_y = p_z = 0$$

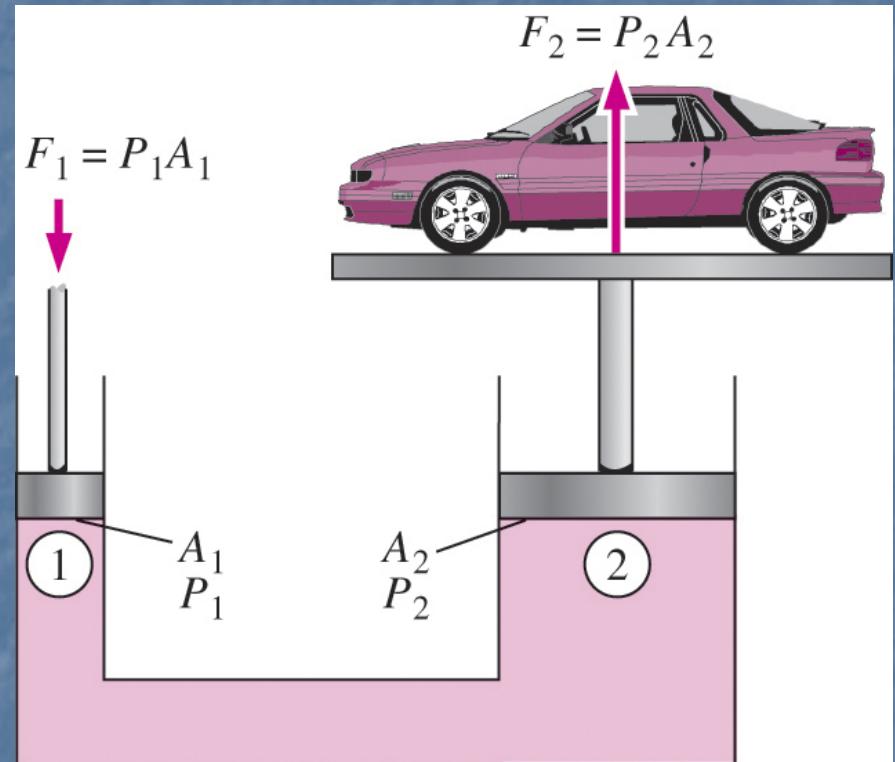
PRESSURE TRANSMISSION (PASCAL LAW)

In a closed system, a pressure produced at a point will be transmitted through out the entire system. (See Fig. 2)

Fluid Statics

Pascal's law: The pressure applied to a confined fluid increases the pressure throughout by the same amount.

$$P_1 = P_2 \rightarrow \frac{F_1}{A_1} = \frac{F_2}{A_2} \rightarrow \frac{F_2}{F_1} = \frac{A_2}{A_1}$$



Lifting of a large weight by a small force by the application of Pascal's law.

EXAMPLE 3.1 LOAD LIFTED BY A HYDRAULIC JACK

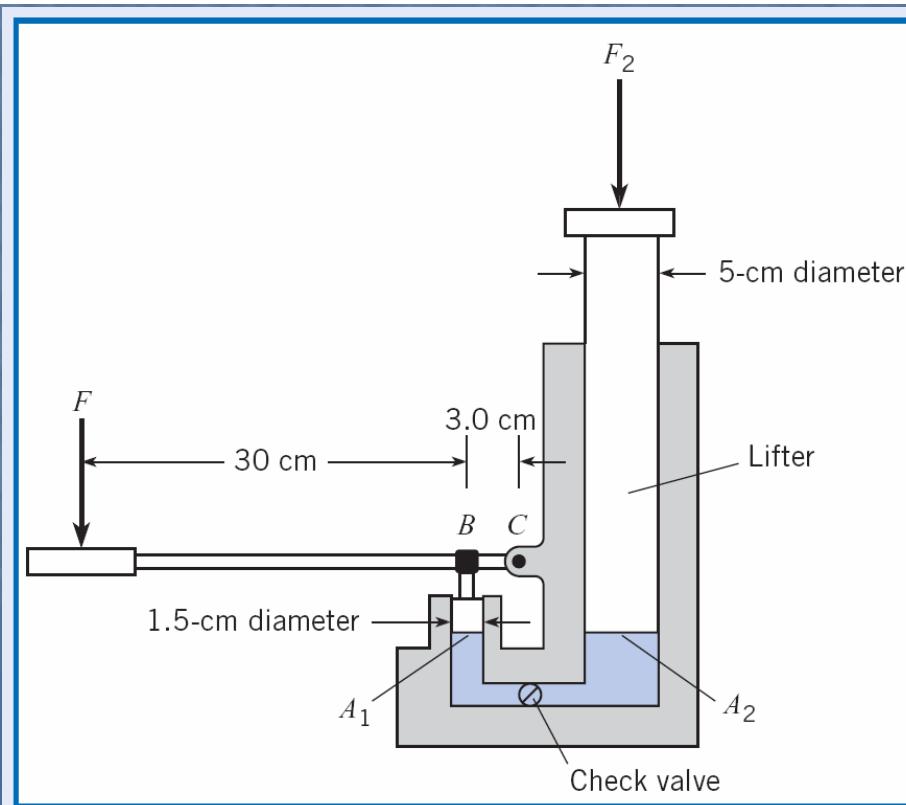
A hydraulic jack has the dimensions shown. If one exerts a force F of 100 N on the handle of the jack, what load, F_2 , can the jack support? Neglect lifter weight.

Problem Definition

Situation: A force of $F = 100$ N is applied to the handle of a jack.

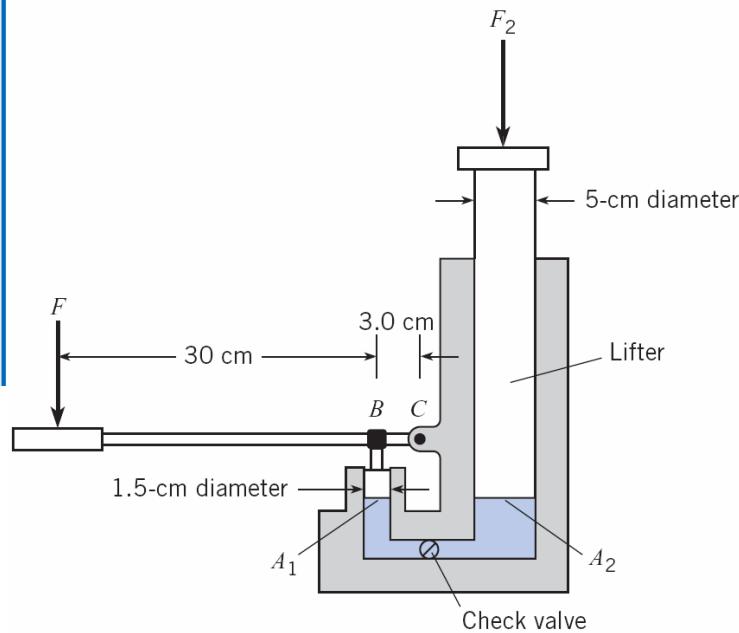
Find: Load F_2 in kN that the jack can lift.

Assumptions: Weight of the lifter component (see sketch) is negligible.



Plan

1. Calculate force acting on the small piston by applying moment equilibrium.
2. Calculate pressure p_1 in the hydraulic fluid by applying force equilibrium.
3. Calculate the load F_2 by applying force equilibrium.



Solution

1. Moment equilibrium

$$\begin{aligned}\sum M_C &= 0 \\ (0.33 \text{ m}) \times (100 \text{ N}) - (0.03 \text{ m})F_1 &= 0 \\ F_1 &= \frac{0.33 \text{ m} \times 100 \text{ N}}{0.03 \text{ m}} = 1100 \text{ N}\end{aligned}$$

2. Force equilibrium (small piston)

$$\begin{aligned}\sum F_{\text{small piston}} &= p_1 A_1 - F_1 = 0 \\ p_1 A_1 &= F_1 = 1100 \text{ N}\end{aligned}$$

Thus

$$p_1 = \frac{F_1}{A_1} = \frac{1100 \text{ N}}{\pi d^2 / 4} = 6.22 \times 10^6 \text{ N/m}^2$$

$$F_2 = p_1 A_2 = \left(6.22 \times 10^6 \frac{\text{N}}{\text{m}^2}\right) \left(\frac{\pi}{4} \times (0.05 \text{ m})^2\right) = \boxed{12.2 \text{ kN}}$$

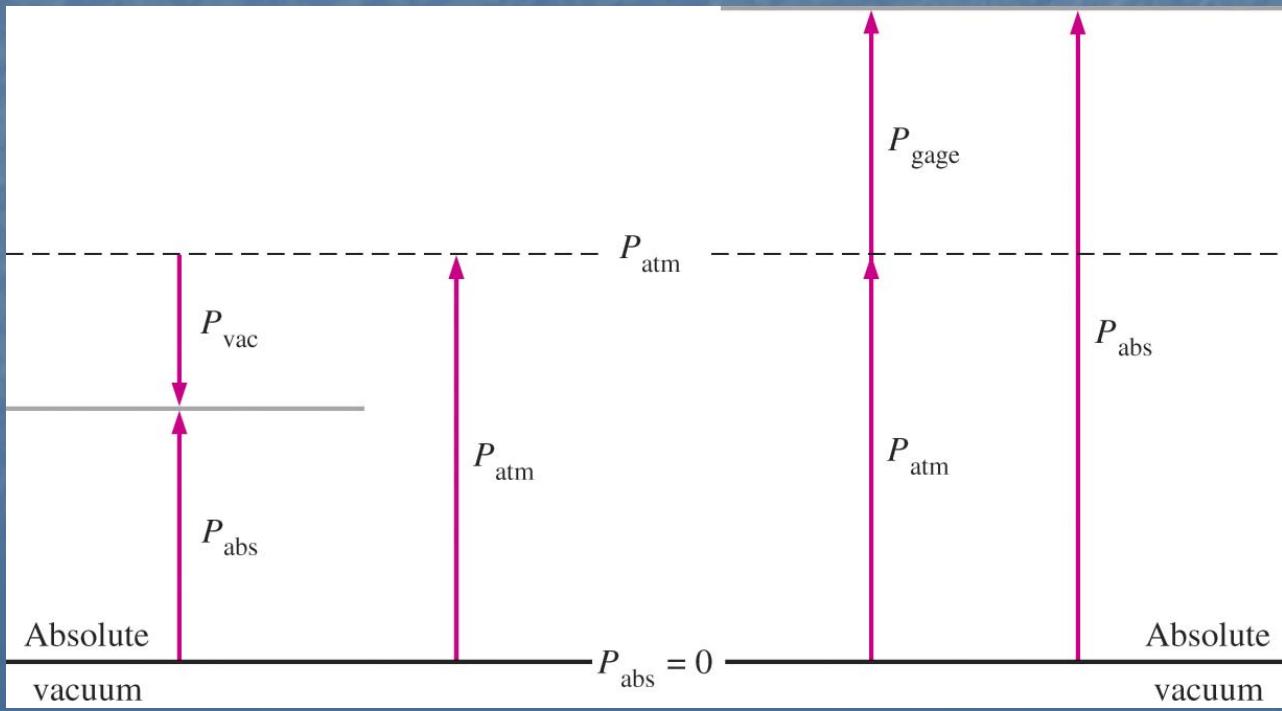
Fluid Statics

ABSOLUTE, GAUGE & VACUUM PRESSURE

- **Absolute pressure:** The actual pressure at a given position. It is measured relative to absolute vacuum (i.e., absolute zero pressure).
- **Gauge pressure:** The difference between the absolute pressure and the local atmospheric pressure. Most pressure-measuring devices are calibrated to read zero in the atmosphere, and so they indicate gage pressure.
- **Vacuum pressures:** Pressures below atmospheric pressure.

$$P_{(gauge)} + P_{(atm)} = P_{(absolute)}$$

$$P_{vac} = P_{atm} - P_{abs}$$



END OF LECTURE
(1)

